# Revisiting the population vs phoneme-inventory correlation

Steven Moran • Daniel McCloy • Richard Wright University of Washington, Seattle

#### **Overview**

- Review of two previous studies
  - Hay & Bauer (2007)
  - Donohue & Nichols (2011)
- Our study
  - Methods
  - Results
  - Interpretation
- Concluding remarks

#### Hay & Bauer (2007)

rho = .37, *p* < 0.0001



Log Population

- N = 216 languages
- $\rho = 0.37$  (statistically significant)

Graph reprinted from Hay & Bauer (2007)

### **Donohue & Nichols (2011)**

Log(Population) vs. 'Phonological size'



- N = 1350 languages
- r = 0.27 (not significant)

Graph reprinted from Donohue & Nichols (2011)

# Which one is correct?

#### Hay & Bauer (2007)

#### • Sample

- 216 language "convenience sample" from Bauer (2007)
- Major world languages, well-known isolates, & typologically interesting languages

#### • Analysis

- Spearman rank correlations
- Data not independent (languages "nested" within families)

#### Donohue & Nichols (2011)

#### • Sample

 1350 languages, welldistributed both genealogically and areally (based on AutoTyp)

#### Analysis

- Simple linear regressions
- Data not independent (languages "nested" within families)

## **Our study**

#### • Sample

- 969 languages from the PHOIBLE knowledge base<sup>1</sup>
- Subsumes Alphabets des langues africaines,<sup>2</sup> SPA<sup>3</sup> & UPSID<sup>4</sup>
- 100 families, 321 genera, 18 isolates
- Excludes extinct, ancient, mixed, pidgin, and creole languages
- Analysis
  - Heirarchical mixed effects model
    - Accomodates non-independent (nested) data
    - Models the within- and between-group variance

[1] Moran & Wright (2009)[2] Hartell (1993), Chanard (2006)

[3] Crothers et al. (1979)[4] Maddieson (1984), Maddieson & Precoda (1990)

## **Overall regression**



 $log_{10}$ (population)

### **Individual family regressions**



log<sub>10</sub>(population)

### **Regressions for the six largest families**



Austronesian slope = 0.00676



**Indo-European** slope = 0.00848

**Trans-New Guinea** 

slope = 0.01064

10

8



 $\log_{10}(\text{population})$ 





 $\log_{10}(\text{population})$ 

0  $\log_{10}(\text{population})$ 

## Model summary

# Fixed effect estimate (left) and variance estimates (center, right) for model predicting phoneme inventory size (N = 969)

|           | Fixed effect       |         | Random effect for genus ( $n = 321$ ) |        |        | Random effect for family $(n=100)$ |        |         |
|-----------|--------------------|---------|---------------------------------------|--------|--------|------------------------------------|--------|---------|
| Predictor | Coefficient (S.E.) | t       | <i>s</i> <sup>2</sup>                 | S      | corr.  | \$ <sup>2</sup>                    | S      | corr.   |
| intercept | 1.4423 (0.0204)    | 70.8403 | 0.0000                                | 0.0000 | 0.0000 | 0.0162                             | 0.1272 | -0.6540 |
| log(pop.) | 0.0093 (0.0041)    | 2.2632  | 0.0001                                | 0.0088 |        | 0.0001                             | 0.0111 |         |

# **Magnitude of predicted effect**

 Predicted effect across full population range is less than the standard deviation within any given population-based cohort



# **Magnitude of predicted effect**

- Predicted effect across full population range is less than the standard deviation within any given population-based cohort
- 10<sup>8</sup>–10<sup>9</sup> cohort skewed upward by outlier (HIN: Hindi)



### **Interpreting our results**

- The relationship is most likely a statistical artefact
  - Evidence: the within-family trends range from increasing, through flat, to decreasing
- Even if it's not an artefact, the relationship is too small to be meaningfully interpreted
  - Evidence: size of predicted effect (1.02 phonemes per order-of-magnitude) is much smaller than the variability within similar-population-size language cohorts

# The bigger picture

- Why expect a correlation at all?<sup>1</sup>
  - Population can change rapidly (war, disease, migration...)
  - Mechanism for phonological change often absent
- If population isn't a good predictor, then what is?
  - A complex web of factors likely influence phoneme inventory size<sup>2</sup>
    - Language family
    - Language contact situation
    - Social network structure
    - etc.

### **Concluding remarks**

"We know that for large enough sample sizes, every study — including ones in which the null hypothesis of no effect is true — will declare a statistically significant effect." <sup>1</sup>

# **Acknowledgments & Thanks to:**

- The University of Washington's Royalty Research Fund for partial funding of PHOIBLE development
- PHOIBLE development assistance from Morgana Davids, Scott Drellishak, David Ellison, Richard John Harvey, Kelley Kilanski, Michael McAulife, Kevin Pittman, Brandon Plasters, Cameron Rule, Daniel Smith, and Daniel Veja
- Marilyn Vihman for providing the Stanford Phonology Archive data
- Tristan Purvis and Christopher Green for assistance with African languages
- Paul Sampson, Theresa Smith, and Donghun Kim for statistical consultation

#### References

- Atkinson, Q. D. (2011). Phonemic diversity supports a serial founder effect model of language expansion from Africa. *Science*, *332*(6027), 346-349. doi:10.1126/science.1199295
- Bauer, L. (2007). The linguistics student's handbook. Oxford: Oxford University Press.
- Chanard, C. (2006). *Systèmes alphabétiques des langues africaines*. Retrieved from http://sumale.vjf.cnrs.fr/phono/
- Crothers, J. H., Lorentz, J. P., Sherman, D. A., & Vihman, M. M. (1979). *Handbook of phonological data from a sample of the world's languages: A report of the Stanford Phonology Archive*. Palo Alto, CA: Department of Linguistics, Stanford University.
- Donohue, M., & Nichols, J. (2011). Does phoneme inventory size correlate with population size? *Linguistic Typology*, *15*, 161-170. doi:10.1515/LITY.2011.011
- Hartell, R. L. (1993). Alphabets des langues africaines. Dakar, SN: UNESCO, Bureau Régional de Dakar.
- Hay, J., & Bauer, L. (2007). Phoneme inventory size and population size. Language, 83(2), 388-400.
- Lewis, M. P. (Ed.). (2009). *Ethnologue: Languages of the world* (16th ed.). Dallas, TX: SIL International. Retrieved from http://www.ethnologue.com/
- Maddieson, I. (1984). Patterns of sounds. Cambridge, UK: Cambridge University Press.
- Maddieson, I., & Precoda, K. (1990). Updating UPSID. UCLA Working Papers in Phonetics, 74, 104-111.
- Moran, S., & Wright, R. (2009). *Phonetics information base and lexicon (PHOIBLE)*. Seattle, WA. Retrieved from http://phoible.org/
- Trudgill, P. (2011). Social structure and phoneme inventories. *Linguistic Typology*, *15*, 155-160. doi:10.1515/LITY.2011.010
- van der Laan, M., & Rose, S. (2010). Statistics ready for a revolution. *Amstat News*. Retrieved from http://magazine.amstat.org/blog/2010/09/01/statrevolution/

# **Backup Slides**

### About the PHOIBLE knowledge base

- Currently over 1500 languages (and growing!)
- Each language record includes:
  - Phonemes: all segments in unicode IPA; some records also include allophones & tonemes
  - Features: each phoneme as a vector of distinctive features, structured as an extensible mathematical graph
  - Genealogy: Language name, ISO 639-3 code, family codes from Multitree,<sup>1</sup> genus-level classifications from WALS<sup>2</sup>
  - Provenance: PDF snapshots from source grammars
  - Demographics: Speaker population, lat./long., GDP, etc.
  - [1] Multitree: A digital library of language relationships. (2009). Ypsilanti, MI: Institute for Language Information and Technology (LINGUIST List), Eastern Michigan University. Retrieved from http://multitree.org/
  - [2] Dryer, M. S., & Haspelmath, M. (Eds.). (2011). The world atlas of language structures online. Munich: Max Planck Digital Library. Retrieved from http://wals.info/